
Week 9:
Transformation of 
stresses and strains
1. Principal and maximum stresses
2. Principal stresses in 3D
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Maximum and Minimum Stress



Transformation of stress and strain 2

§ From the equations for normal and shear stress under an arbitrary angle, we 
can see that there are angles of maximum and minimum shear and normal 
stresses

§ We can calculate these angles by setting the respective derivatives to zero
§ For the maximum/minimum of the normal stresses we get:

§ This is the principal stress and the angle under which it is is the principal axis

Principal and maximum stresses



Transformation to 
principal stresses
§ Assume an element is under a 

combination of normal and shear 
stresses when looked at in a specific 
coordinate system. 

§ There exists a rotated coordinate 
system in which the description of the 
same stress element will result in only 
normal stresses, with the shear 
stresses being zero.

§ The normal stresses expressed in this 
rotated coordinate system are the 
principal stresses. One normal stress is 
the maximum normal stress. The other 
normal stress is the minimal stress

§ The axes of this rotated coordinate 
system are the principal axes.
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Principal and maximum shear stresses 4

§ For the plane where the shear stress is maximum we get:

§ The absolute value of the maximum shear stress is the same for the 
axis of maximum and the axis of minimum shear stress. This is 
understandable, since the material doesn’t care if it is “sheared left or 
right”

§ In the principal axis, there is nor shear stress
§ In the axis of maximum shear stress, there is also a normal stress 

(average normal stress)
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Mohr’s circle of stress
§ The symmetry in the equations for the shear 

stress and the normal stress suggest that 
there is an easy way to describe their 
relationship, and to calculate the normal and 
shear stresses in any direction

§ We plot for each direction we’ve calculated 
the σi and !i on a coordinate system of σ
and !

§ We know form our calculations:
§ There are directions where σ is 

maximum or minimum and !=0
§ There are also directions where ! is 

maximum or minimum and σ=(σx+σy)/2
§ What do we get if we draw all possible 

combinations on here?
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7What we can learn from 
Mohr’s circle of stress

σ1 is the maximum normal stress, σ2 is the 
minimum normal stress, and there are no shear 
stresses in that direction

The largest shear stress is equal to the radius of the 
circle and in the direction of max shear stress we 
have a normal stress of σav=(σ1+σ2)/2

If σx+σy=0, then there is an axis of pure shear 
stress

The sum of all stresses in any two mutually 
orthogonal directions planes is constant  



Transformation of plane strain 8

§ Since both stress and strain are tensors, we can treat the coordinate 
transform of the strain in a similar way as that for the stress

§ The transformation equations for plane strain then are:
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Principal strains 9

§ These formulas are very similar to the ones we’ve derived for stress
§ We can therefore again show that we can plot all the possible combinations of 

normal strain and shear strain in a graph with axes ε,!/2, and obtain a circle: 
Mohr’s circle of strain

§ By setting the derivatives of transformation expressions for normal strain and 
shear strain with respect to θ to zero, we can again calculate the principal 
strains:

§ At the principal angle:
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Mohr’s circle of strain in 2D 10
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Plane stress Plane strain

max normal

max shear

Angle max 
normal

Angle max 
shear

Transformation of plane stress & strain in 2D 11

Summary
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Principle stresses in 3D 12

§ The stress tensor is a symmetric  3x3 tensor that can be written in different 
coordinate systems. 

§ From linear algebra we know that one coordinate system exists in which the tensor 
only has non-zero elements in its diagonal (everywhere else the components are 
zero).

§ The axes of this coordinate system are the principal axes
§ The elements in the diagonal are the principal stresses
§ When the stress tensor is represented in its principal coordinate system, there are 

no shear stresses, only normal stresses
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Principle stresses in 3D 13

§ Calculating the principal stresses equal finding the eigenvalues and eigenvectors 
of the stress tensor:

§ When we know the 3D stress state in our reference coordinate system, we can 
calculate the principal stresses by calculating the roots of the characteristic 
equation:

§ With I1, I2, I3:

§ I1, I2, I3 are the stress invariants.  

Calculating the principal stresses
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Principle stresses in 3D 14

§ The stress invariants in the principal axes are then:

§ With the eigenvalues of the 3D stress tensor we can then calculate the 
Eigenvectors. The Eigenvectors point in the direction of the principal axes of 
the stress state.

I1 = �1 + �2 + �3

I2 = �1�2 + �1�3 + �2�3

I3 = �1�2�3



Mohr’s circle in 3D

§ The stress tensor is dependent only on 
the stress state, and not on our initial 
choice of coordinate system. 

§ We’ve previously learned to draw the 
Mohr’s circle in 2D. Those were in 
essence projection of the 3D stress state 
in 2D

§ To get to Mohr’s circle in 3D, we can 
therefore draw three individual Mohr’s 
circles for the planes x-y, x-z, and y-z, as 
long as we know the principal stresses
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Mohr’s circle in 3D-
Maximum shear stress

We can use Mohr’s circle in 3D to 
evaluate what the maximum shear 
stresses are in the 3 principal 
directions
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Mohr’s circle in 3D - 3D state of plane stress 17

§ 3D state of plane stress – 2 positive stresses:

§ 3D state of plane stress – 1 positive stress, 1 negative:



Example: Triaxial stress 
state – NOT plane stress

Calculate the maximum principal 
stresses and maximum shear 
stresses for the stress state on the 
left.

Solution:
Calculate stress invariants
Calculate roots of characteristic 
equation (through a plot)
Extract the maximum shear and 
principal stresses
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Example: Triaxial stress 
state – NOT plane stress

19



Example: Triaxial stress 
state – NOT plane stress

20



Failure criteria and beam 
bending

30



What is Failure?

Failure – any change in a machine part 
which makes it unable to perform its 
intended function.(From Spotts M. F. 
and Shoup T. E.) 
We will normally use a yield failure 
criteria for ductile materials. The 
ductile failure theories presented are 
based on yield.
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§ Static failure
• Ductile
• Brittle
• Stress concentration

§ Recall
• Ductile

§ Significant plastic deformation 
between yield and fracture

• Brittle
§ Yield ~= fracture

Failure Theories
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Failure of brittle 
materials

33

§ A brittle material subjected to uniaxial tension fails without necking, on a plane 
normal to the material’s long axis 

§ Under uniaxial tensile stress, the normal stress that causes it to fail is the 
ultimate tensile strength of the material 

§ If the material is under three-dimensional stress state, it is useful to determine 
the principal stresses at any given point and to use one of the failure criteria 



Failure of brittle materials
Maximum normal stress criterion

34

§ A given structural element fails when 
the maximum normal stress in that 
component reaches the material’s 
ultimate tensile strength.

§ This criterion should only be applied 
to brittle materials

§ It implies that the mechanism of 
failure is separation

§ In the case of plane stress, we can 
draw the maximum normal stress 
criterion graphically.  Any state of 
stress within the shaded area is safe

Max (|�1|,�2|, |�3|) = �U



Yield Criteria for Ductile 
Materials 

§ a ductile material subjected to uniaxial 
tension yields and fails by slippage along 
oblique surfaces and is due primarily to 
shear stresses 

§ Ductile materials fail not through fracture, 
but through deformation.

§ plastic deformation initiated at the yield 
strength takes place through shear 
deformation, it is natural to expect failure 
criteria to be expressed in terms of shear 
stress  

§ We therefore cast failure criteria in terms 
of yield:

Von Mises criterion (distortion energy criterion)
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Von Mises Criterion 36

§ This criterion for failure of ductile materials is derived from strain energy 
considerations and states that yielding occurs when: 

§ To make determining the stress state for failure analysis simpler, we can 
calculate an equivalent Von Mises stress for each point in the structure.

To determine whether a structural component will be safe under a given load, we 
should calculate the stress state at all critical points of the component and 
particularly at all points where stress concentrations are likely to occur. 



Safety factor 37

§ We can describe how close a material in a structure is to its failure point using 
the safety factor.

§ The safety factor compares the respective yield strength to the respective 
maximum or equivalent stress

§ For the Von Mises safety factor we get:

§ sometimes the safety factor is also written as (e for equivalent):
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